skip to main content


Search for: All records

Creators/Authors contains: "Saad-Roy, Chadi M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Infectious diseases may cause some long-term damage to their host, leading to elevated mortality even after recovery. Mortality due to complications from so-called ‘long COVID’ is a stark illustration of this potential, but the impacts of such post-infection mortality (PIM) on epidemic dynamics are not known. Using an epidemiological model that incorporates PIM, we examine the importance of this effect. We find that in contrast to mortality during infection, PIM can induce epidemic cycling. The effect is due to interference between elevated mortality and reinfection through the previously infected susceptible pool. In particular, robust immunity (via decreased susceptibility to reinfection) reduces the likelihood of cycling; on the other hand, disease-induced mortality can interact with weak PIM to generate periodicity. In the absence of PIM, we prove that the unique endemic equilibrium is stable and therefore our key result is that PIM is an overlooked phenomenon that is likely to be destabilizing. Overall, given potentially widespread effects, our findings highlight the importance of characterizing heterogeneity in susceptibility (via both PIM and robustness of host immunity) for accurate epidemiological predictions. In particular, for diseases without robust immunity, such as SARS-CoV-2, PIM may underlie complex epidemiological dynamics especially in the context of seasonal forcing.

     
    more » « less
    Free, publicly-accessible full text available July 12, 2024
  2. Individual and societal reactions to an ongoing pandemic can lead to social dilemmas: In some cases, each individual is tempted to not follow an intervention, but for the whole society, it would be best if they did. Now that in most countries, the extent of regulations to reduce SARS-CoV-2 transmission is very small, interventions are driven by individual decision-making. Assuming that individuals act in their best own interest, we propose a framework in which this situation can be quantified, depending on the protection the intervention provides to a user and to others, the risk of getting infected, and the costs of the intervention. We discuss when a tension between individual and societal benefits arises and which parameter comparisons are important to distinguish between different regimes of intervention use.

     
    more » « less
    Free, publicly-accessible full text available June 13, 2024
  3. As the SARS-CoV-2 trajectory continues, the longer-term immuno-epidemiology of COVID-19, the dynamics of Long COVID, and the impact of escape variants are important outstanding questions. We examine these remaining uncertainties with a simple modelling framework that accounts for multiple (antigenic) exposures via infection or vaccination. If immunity (to infection or Long COVID) accumulates rapidly with the valency of exposure, we find that infection levels and the burden of Long COVID are markedly reduced in the medium term. More pessimistic assumptions on host adaptive immune responses illustrate that the longer-term burden of COVID-19 may be elevated for years to come. However, we also find that these outcomes could be mitigated by the eventual introduction of a vaccine eliciting robust (i.e. durable, transmission-blocking and/or ‘evolution-proof’) immunity. Overall, our work stresses the wide range of future scenarios that still remain, the importance of collecting real-world epidemiological data to identify likely outcomes, and the crucial need for the development of a highly effective transmission-blocking, durable and broadly protective vaccine.

     
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  4. null (Ed.)
    Pathogens evolve different life-history strategies, which depend in part on differences in their host populations. A central feature of hosts is their population structure (e.g. spatial). Additionally, hosts themselves can exhibit different degrees of symptoms when newly infected; this latency is a key life-history property of pathogens. With an evolutionary-epidemiological model, we examine the role of population structure on the evolutionary dynamics of latency. We focus on specific power-law-like formulations for transmission and progression from the first infectious stage as a function of latency, assuming that the across-group to within-group transmission ratio increases if hosts are less symptomatic. We find that simple population heterogeneity can lead to local evolutionarily stable strategies (ESSs) at zero and infinite latency in situations where a unique ESS exists in the corresponding homogeneous case. Furthermore, there can exist more than one interior evolutionarily singular strategy. We find that this diversity of outcomes is due to the (possibly slight) advantage of across-group transmission for pathogens that produce fewer symptoms in a first infectious stage. Thus, our work reveals that allowing individuals without symptoms to travel can have important unintended evolutionary effects and is thus fundamentally problematic in view of the evolutionary dynamics of latency. 
    more » « less
  5. null (Ed.)
    SARS-CoV-2 is an international public health emergency; high transmissibility and morbidity and mortality can result in the virus overwhelming health systems. Combinations of social distancing, and test, trace, and isolate strategies can reduce the number of new infections per infected individual below 1, thus driving declines in case numbers, but may be both challenging and costly. These interventions must also be maintained until development and (now likely) mass deployment of a vaccine (or therapeutics), since otherwise, many susceptible individuals are still at risk of infection. We use a simple analytical model to explore how low levels of infection, combined with vaccination, determine the trajectory to community immunity. Understanding the repercussions of the biological characteristics of the viral life cycle in this scenario is of considerable importance. We provide a simple description of this process by modelling the scenario where the effective reproduction number R eff is maintained at 1. Since the additional complexity imposed by the strength and duration of transmission-blocking immunity is not yet clear, we use our framework to probe the impact of these uncertainties. Through intuitive analytical relations, we explore how the necessary magnitude of vaccination rates and mitigation efforts depends crucially on the durations of natural and vaccinal immunity. We also show that our framework can encompass seasonality or preexisting immunity due to epidemic dynamics prior to strong mitigation measures. Taken together, our simple conceptual model illustrates the importance of individual and vaccinal immunity for community immunity, and that the quantification of individuals immunized against SARS-CoV-2 is paramount. 
    more » « less
  6. null (Ed.)
    Pathogens have evolved a variety of life-history strategies. An important strategy consists of successful transmission by an infected host before the appearance of symptoms, that is, while the host is still partially or fully asymptomatic. During this initial stage of infection, it is possible for another pathogen to superinfect an already infected host and replace the previously infecting pathogen. Here, we study the effect of superinfection during the first stage of an infection on the evolutionary dynamics of the degree to which the host is asymptomatic (host latency) in that same stage. We find that superinfection can lead to major differences in evolutionary behaviour. Most strikingly, the duration of immunity following infection can significantly influence pathogen evolutionary dynamics, whereas without superinfection the outcomes are independent of host immunity. For example, changes in host immunity can drive evolutionary transitions from a fully symptomatic to a fully asymptomatic first infection stage. Additionally, if superinfection relative to susceptible infection is strong enough, evolution can lead to a unique strategy of latency that corresponds to a local fitness minimum, and is therefore invasible by nearby mutants. Thus, this strategy is a branching point, and can lead to coexistence of pathogens with different latencies. Furthermore, in this new framework with superinfection, we also find that there can exist two interior singular strategies. Overall, new evolutionary outcomes can cascade from superinfection. 
    more » « less
  7. null (Ed.)
    Despite vast improvements in global vaccination coverage during the last decade, there is a growing trend in vaccine hesitancy and/or refusal globally. This has implications for the acceptance and coverage of a potential vaccine against COVID-19. In the United States, the number of children exempt from vaccination for “philosophical belief-based” non-medical reasons increased in 12 of the 18 states that allowed this policy from 2009 to 2017 ( 1 ). Meanwhile, the overuse and misuse of antibiotics, especially in young children, have led to increasing rates of drug resistance that threaten our ability to treat infectious diseases. Vaccine hesitancy and antibiotic overuse exist side-by-side in the same population of young children, and it is unclear why one modality (antibiotics) is universally seen as safe and effective, while the other (vaccines) is seen as potentially hazardous by some. In this review, we consider the drivers shaping the use of vaccines and antibiotics in the context of three factors: individual incentives, risk perceptions, and social norms and group dynamics. We illustrate how these factors contribute to the societal and individual costs of vaccine underuse and antimicrobial overuse. Ultimately, we seek to understand these factors that are at the nexus of infectious disease epidemiology and social science to inform policy-making. 
    more » « less
  8. null (Ed.)
    Vaccines provide powerful tools to mitigate the enormous public health and economic costs that the ongoing SARS-CoV-2 pandemic continues to exert globally, yet vaccine distribution remains unequal among countries. To examine the potential epidemiological and evolutionary impacts of ‘vaccine nationalism’, we extend previous models to include simple scenarios of stockpiling between two regions. In general, when vaccines are widely available and the immunity they confer is robust, sharing doses minimizes total cases across regions. A number of subtleties arise when the populations and transmission rates in each region differ, depending on evolutionary assumptions and vaccine availability. When the waning of natural immunity contributes most to evolutionary potential, sustained transmission in low access regions results in an increased potential for antigenic evolution, which may result in the emergence of novel variants that affect epidemiological characteristics globally. Overall, our results stress the importance of rapid equitable vaccine distribution for global control of the pandemic. 
    more » « less
  9. Pathogens exhibit a rich variety of life history strategies, shaped by natural selection. An important pathogen life history characteristic is the propensity to induce an asymptomatic yet productive (transmissive) stage at the beginning of an infection. This characteristic is subject to complex trade-offs, ranging from immunological considerations to population-level social processes. We aim to classify the evolutionary dynamics of such asymptomatic behavior of pathogens (hereafter “latency”) in order to unify epidemiology and evolution for this life history strategy. We focus on a simple epidemiological model with two infectious stages, where hosts in the first stage can be partially or fully asymptomatic. Immunologically, there is a trade-off between transmission and progression in this first stage. For arbitrary trade-offs, we derive different conditions that guarantee either at least one evolutionarily stable strategy (ESS) at zero, some, or maximal latency of the first stage or, perhaps surprisingly, at least one unstable evolutionarily singular strategy. In this latter case, there is bistability between zero and nonzero (possibly maximal) latency. We then prove the uniqueness of interior evolutionarily singular strategies for power-law and exponential trade-offs: Thus, bistability is always between zero and maximal latency. Overall, previous multistage infection models can be summarized with a single model that includes evolutionary processes acting on latency. Since small changes in parameter values can lead to abrupt transitions in evolutionary dynamics, appropriate disease control strategies could have a substantial impact on the evolution of first-stage latency.

     
    more » « less
  10. Sills, Jennifer (Ed.)